Linear Algebra Examples

Find the Determinant [[0,-1,a],[3,-a,1],[1,-2,3]]
[0-1a3-a11-23]01a3a1123
Step 1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Tap for more steps...
Step 1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Step 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-a1-23|a123
Step 1.4
Multiply element a11a11 by its cofactor.
0|-a1-23|0a123
Step 1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|3113|3113
Step 1.6
Multiply element a12a12 by its cofactor.
1|3113|13113
Step 1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|3-a1-2|3a12
Step 1.8
Multiply element a13a13 by its cofactor.
a|3-a1-2|a3a12
Step 1.9
Add the terms together.
0|-a1-23|+1|3113|+a|3-a1-2|0a123+13113+a3a12
0|-a1-23|+1|3113|+a|3-a1-2|0a123+13113+a3a12
Step 2
Multiply 00 by |-a1-23|a123.
0+1|3113|+a|3-a1-2|0+13113+a3a12
Step 3
Evaluate |3113|3113.
Tap for more steps...
Step 3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
0+1(33-11)+a|3-a1-2|0+1(3311)+a3a12
Step 3.2
Simplify the determinant.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Multiply 33 by 33.
0+1(9-11)+a|3-a1-2|0+1(911)+a3a12
Step 3.2.1.2
Multiply -11 by 11.
0+1(9-1)+a|3-a1-2|0+1(91)+a3a12
0+1(9-1)+a|3-a1-2|0+1(91)+a3a12
Step 3.2.2
Subtract 11 from 99.
0+18+a|3-a1-2|0+18+a3a12
0+18+a|3-a1-2|0+18+a3a12
0+18+a|3-a1-2|0+18+a3a12
Step 4
Evaluate |3-a1-2|3a12.
Tap for more steps...
Step 4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
0+18+a(3-2--a)0+18+a(32a)
Step 4.2
Simplify each term.
Tap for more steps...
Step 4.2.1
Multiply 33 by -22.
0+18+a(-6--a)0+18+a(6a)
Step 4.2.2
Multiply --aa.
Tap for more steps...
Step 4.2.2.1
Multiply -11 by -11.
0+18+a(-6+1a)0+18+a(6+1a)
Step 4.2.2.2
Multiply aa by 11.
0+18+a(-6+a)0+18+a(6+a)
0+18+a(-6+a)0+18+a(6+a)
0+18+a(-6+a)0+18+a(6+a)
0+18+a(-6+a)0+18+a(6+a)
Step 5
Simplify the determinant.
Tap for more steps...
Step 5.1
Add 00 and 1818.
18+a(-6+a)18+a(6+a)
Step 5.2
Simplify each term.
Tap for more steps...
Step 5.2.1
Multiply 88 by 11.
8+a(-6+a)8+a(6+a)
Step 5.2.2
Apply the distributive property.
8+a-6+aa8+a6+aa
Step 5.2.3
Move -66 to the left of aa.
8-6a+aa86a+aa
Step 5.2.4
Multiply aa by aa.
8-6a+a286a+a2
8-6a+a286a+a2
8-6a+a286a+a2
Enter a problem...
 [x2  12  π  xdx ]  x2  12  π  xdx