Enter a problem...
Linear Algebra Examples
[0-1a3-a11-23]⎡⎢⎣0−1a3−a11−23⎤⎥⎦
Step 1
Step 1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Step 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Step 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|-a1-23|∣∣∣−a1−23∣∣∣
Step 1.4
Multiply element a11a11 by its cofactor.
0|-a1-23|0∣∣∣−a1−23∣∣∣
Step 1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|3113|∣∣∣3113∣∣∣
Step 1.6
Multiply element a12a12 by its cofactor.
1|3113|1∣∣∣3113∣∣∣
Step 1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|3-a1-2|∣∣∣3−a1−2∣∣∣
Step 1.8
Multiply element a13a13 by its cofactor.
a|3-a1-2|a∣∣∣3−a1−2∣∣∣
Step 1.9
Add the terms together.
0|-a1-23|+1|3113|+a|3-a1-2|0∣∣∣−a1−23∣∣∣+1∣∣∣3113∣∣∣+a∣∣∣3−a1−2∣∣∣
0|-a1-23|+1|3113|+a|3-a1-2|0∣∣∣−a1−23∣∣∣+1∣∣∣3113∣∣∣+a∣∣∣3−a1−2∣∣∣
Step 2
Multiply 00 by |-a1-23|∣∣∣−a1−23∣∣∣.
0+1|3113|+a|3-a1-2|0+1∣∣∣3113∣∣∣+a∣∣∣3−a1−2∣∣∣
Step 3
Step 3.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
0+1(3⋅3-1⋅1)+a|3-a1-2|0+1(3⋅3−1⋅1)+a∣∣∣3−a1−2∣∣∣
Step 3.2
Simplify the determinant.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Multiply 33 by 33.
0+1(9-1⋅1)+a|3-a1-2|0+1(9−1⋅1)+a∣∣∣3−a1−2∣∣∣
Step 3.2.1.2
Multiply -1−1 by 11.
0+1(9-1)+a|3-a1-2|0+1(9−1)+a∣∣∣3−a1−2∣∣∣
0+1(9-1)+a|3-a1-2|0+1(9−1)+a∣∣∣3−a1−2∣∣∣
Step 3.2.2
Subtract 11 from 99.
0+1⋅8+a|3-a1-2|0+1⋅8+a∣∣∣3−a1−2∣∣∣
0+1⋅8+a|3-a1-2|0+1⋅8+a∣∣∣3−a1−2∣∣∣
0+1⋅8+a|3-a1-2|0+1⋅8+a∣∣∣3−a1−2∣∣∣
Step 4
Step 4.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
0+1⋅8+a(3⋅-2--a)0+1⋅8+a(3⋅−2−−a)
Step 4.2
Simplify each term.
Step 4.2.1
Multiply 33 by -2−2.
0+1⋅8+a(-6--a)0+1⋅8+a(−6−−a)
Step 4.2.2
Multiply --a−−a.
Step 4.2.2.1
Multiply -1−1 by -1−1.
0+1⋅8+a(-6+1a)0+1⋅8+a(−6+1a)
Step 4.2.2.2
Multiply aa by 11.
0+1⋅8+a(-6+a)0+1⋅8+a(−6+a)
0+1⋅8+a(-6+a)0+1⋅8+a(−6+a)
0+1⋅8+a(-6+a)0+1⋅8+a(−6+a)
0+1⋅8+a(-6+a)0+1⋅8+a(−6+a)
Step 5
Step 5.1
Add 00 and 1⋅81⋅8.
1⋅8+a(-6+a)1⋅8+a(−6+a)
Step 5.2
Simplify each term.
Step 5.2.1
Multiply 88 by 11.
8+a(-6+a)8+a(−6+a)
Step 5.2.2
Apply the distributive property.
8+a⋅-6+a⋅a8+a⋅−6+a⋅a
Step 5.2.3
Move -6−6 to the left of aa.
8-6⋅a+a⋅a8−6⋅a+a⋅a
Step 5.2.4
Multiply aa by aa.
8-6a+a28−6a+a2
8-6a+a28−6a+a2
8-6a+a28−6a+a2